দুই চলকবিশিষ্ট সরল সহসমীকরণের সমাধান যোগ্যতা
বিষয়বস্তু: দুই চলকবিশিষ্ট সরল সহসমীকরণ (৯ম-১০ম গণিত)
আলোচ্য বিষয়সমূহ: সমীকরণজোট সমঞ্জস/অসমঞ্জস, নির্ভরশীল/অনির্ভরশীল, সমাধান আছে/নেই।
দুই চলকবিশিষ্ট সরল সহসমীকরণ (সমীকরণজোট)-এর সমাধান যোগ্যতার আলোচ্য বিষয়:
(১) সমীকরণজোট সমঞ্জস/অসমঞ্জস।
(২) সমীকরণজোট পরস্পর নির্ভরশীল/অনির্ভরশীল।
(৩) সমীকরণজোটের সমাধান আছে/নেই। সমাধান থাকলে, কয়টি সমাধান আছে?
সমীকরণজোটের সমাধান যোগ্যতার শর্ত
উপরের সমীকরণজোটটির সমাধান যোগ্যতার শর্ত নিম্নরূপ:
হলে,
সমীকরণজোট সমঞ্জস, পরস্পর অনির্ভরশীল এবং সমীকরণজোটের একটিমাত্র (অনন্য) সমাধান আছে।
—————————————————————————————————————–
হলে,
সমীকরণজোট সমঞ্জস, পরস্পর নির্ভরশীল এবং সমীকরণজোটের অসংখ্য সমাধান আছে।
এর ক্ষেত্রে ,
হলে,
সমীকরণজোটের সমাধান যোগ্যতা একই থাকবে অর্থাৎ সমীকরণজোট সমঞ্জস, পরস্পর নির্ভরশীল এবং সমীকরণজোটের অসংখ্য সমাধান আছে।
—————————————————————————————————————–
হলে,
সমীকরণজোট অসমঞ্জস, পরস্পর অনির্ভরশীল এবং সমীকরণজোটের কোনো সমাধান নেই।
—————————————————————————————————————–
বিষয়গুলো পরিস্কার হওয়ার জন্য নিচের উদাহরণগুলো লক্ষ্য করি।
উদাহরণ-১
উপরের সমীকরণজোটের সমাধান যোগ্যতা নির্ণয় করি।
জানা থাকা দরকার:
এই সমীকরণজোটের ক্ষেত্রে,
হলে,
সমীকরণজোট সমঞ্জস, পরস্পর নির্ভরশীল এবং সমীকরণজোটের অসংখ্য সমাধান আছে।
এখানে,
সমীকরণজোটের ক্ষেত্রে,
সুতরাং সমীকরণজোট সমঞ্জস, পরস্পর নির্ভরশীল এবং সমীকরণজোটটির অসংখ্য সমাধান আছে।
সমঞ্জস/অসমঞ্জস-এর ব্যাখ্যা
উপরের সমীকরণজোটটির সমাধান করার চেষ্টা করি।
১ম সমীরকণকে 2 দ্বারা গুণ করে প্রাপ্ত সমীকরণ থেকে ২য় সমীকরণ বিয়োগ করি
———————–
, যা গ্রহণযোগ্য।
সুতরাং সমীকরণজোট সমঞ্জস।
নির্ভরশীল/অনির্ভরশীল-এর ব্যাখ্যা
সমীকরণজোটটির ১ম সমীকরণের উভয়পক্ষকে 2 দ্বারা গুণ করলে ২য় সমীকরণটি পাওয়া যাবে। আবার, ২য় সমীকরণের উভয়পক্ষকে 2 দ্বারা ভাগ করলে ১ম সমীকরণটি পাওয়া যাবে। যেমন:
[১ম সমীকরণের উভয় পক্ষকে 2 দ্বারা গুণ করে প্রাপ্ত]
[২য় সমীকরণ]
আবার,
[১ম সমীকরণ]
[২য় সমীকরণের উভয় পক্ষকে 2 দ্বারা ভাগ করে প্রাপ্ত]
যেহেতু সমীকরণজোটটির একটি সমীকরণকে অন্যটির মাধ্যমে প্রকাশ করা যায়, সুতরাং সমীকরণজোটটি পরস্পর নির্ভরশীল।
সমাধান আছে (কয়টি)/নেই-এর ব্যাখ্যা
প্রতিটি সরল সমীকরণ একটি সরলরেখাকে প্রকাশ করে। উল্লেখ্য, একটি সরল সমীকরণের x ও y এর বিভিন্ন মান নিয়ে দুই বা ততোধিক বিন্দু নির্ণয় করে বিন্দুগুলো ছক কাগজে স্থাপন করে যোগ করলে একটি সরলরেখা পাওয়া যায়।
একটি সরলরেখার অসংখ্য বিন্দু থাকে তাই একটি সরল সমীকরণেরও অসংখ্য সমাধান থাকে। যেমন:
সমীকরণটি x ও y এর অসংখ্য মানের জন্য শুদ্ধ। নিচের শুদ্ধি পরীক্ষাটি লক্ষ্য করি:
x এর মান | y এর মান | বামপক্ষ | ডানপক্ষ |
0 | – 6 | 0 + 6 | 6 |
– 2 | – 10 | – 4 + 10 | 6 |
3 | 0 | 6 – 0 | 6 |
5 | 4 | 10 – 4 | 6 |
এভাবে x ও y এর অসংখ্য মান নিয়ে উপরোক্ত সমীকরণটি শুদ্ধ প্রমাণ করা যায়। সুতরাং সমীকরণটির অসংখ্য সমাধান আছে। অনুরূপভাবে, সমীকরণটিরও অসংখ্য সমাধান আছে।
এখন, যেহেতু ১ম সমীরকণকে 2 দ্বারা গুণ করলে ২য় সমীকরণটি পাওয়া যায়, আবার ২য় সমীকরণকে 2 দ্বারা ভাগ করলে ১ম সমীকরণটি পাওয়া যায় তাই সমীকরণদ্বয় একই সরলরেখার সমীকরণ এবং এ কারণেই বলা যায় সমীকরণজোটটির অসংখ্য সমাধান আছে।
উল্লেখ্য, যে সমীকরণজোটের একটি সমীকরণকে অন্যটির মাধ্যমে প্রকাশ করা যায় না সেই সমীকরণজোটের সমীকরণ দুইটির পৃথকভাবে অসংখ্য সমাধান থাকলেও জোট হিসেবে সমীকরণদ্বয়ের অসংখ্য সমাধান নেই।
উদাহরণ-২
উপরের সমীকরণজোটের সমাধান যোগ্যতা নির্ণয় করি।
জানা থাকা দরকার:
এই সমীকরণজোটের ক্ষেত্রে,
হলে,
সমীকরণজোট সমঞ্জস, পরস্পর অনির্ভরশীল এবং সমীকরণজোটের একটিমাত্র (অনন্য) সমাধান আছে।
এখানে,
সমীকরণজোটের ক্ষেত্রে,
সুতরাং সমীকরণজোট সমঞ্জস, পরস্পর অনির্ভরশীল এবং সমীকরণজোটটির একটিমাত্র (অনন্য) সমাধান আছে।
সমঞ্জস/অসমঞ্জস-এর ব্যাখ্যা
উপরের সমীকরণজোটটির সমাধান করার চেষ্টা করি।
সমীকরণ দু’টি যোগ করি
———————–
, যা গ্রহণযোগ্য।
সুতরাং সমীকরণজোটটি সমঞ্জস।
নির্ভরশীল/অনির্ভরশীল-এর ব্যাখ্যা
সমীকরণজোটটির একটি সমীকরণকে অন্যটির মাধ্যমে প্রকাশ করা যায় না।
সুতরাং সমীকরণজোটটি পরস্পর অনির্ভরশীল।
সমাধান আছে (কয়টি)/নেই-এর ব্যাখ্যা
সমঞ্জস ও পরস্পর অনির্ভরশীল সরল সহসমীকরণের বা সমীকরণজোটের একটিমাত্র (অনন্য) সমাধান থাকে।
এখানে,
সমীকরণদ্বয়কে যোগ করে গ্রহণযোগ্য অবস্থা পাওয়া যায় বিধায় সমীকরণজোট সমঞ্জস। আবার, সমীকরণজোটের একটি সমীকরণকে অন্যটির মাধ্যমে প্রকাশ করা যায় না বিধায় সমীকরণজোট পরস্পর অনির্ভরশীল।
সুতরাং প্রদত্ত সমীকরণজোটের একটিমাত্র (অনন্য) সমাধান আছে।
উদাহরণ-৩
উপরের সমীকরণজোটের সমাধান যোগ্যতা নির্ণয় করি।
জানা থাকা দরকার:
এই সমীকরণজোটের ক্ষেত্রে,
হলে,
সমীকরণজোট অসমঞ্জস, পরস্পর অনির্ভরশীল এবং সমীকরণজোটের কোনো সমাধান নেই।
এখানে,
সমীকরণজোটের ক্ষেত্রে,
সুতরাং সমীকরণজোট অসমঞ্জস, পরস্পর অনির্ভরশীল এবং সমীকরণজোটটির কোনো সমাধান নেই।
সমঞ্জস/অসমঞ্জস-এর ব্যাখ্যা
উপরের সমীকরণজোটটি সমাধান করার চেষ্টা করি।
১ম সমীরকণকে 2 দ্বারা গুণ করে প্রাপ্ত সমীকরণ থেকে ২য় সমীকরণ বিয়োগ করি
——————–
, যা অসম্ভব ।
সুতরাং সমীকরণজোটটি অসমঞ্জস।
নির্ভরশীল/অনির্ভরশীল-এর ব্যাখ্যা
সমীকরণজোটটির একটি সমীকরণকে অন্যটির মাধ্যমে প্রকাশ করা যায় না।
সুতরাং সমীকরণজোটটি পরস্পর অনির্ভরশীল।
সমাধান আছে (কয়টি)/নেই-এর ব্যাখ্যা
কোনো সমীকরণজোট অসমঞ্জস হলে সমীকরণজোটটির কোনো সমাধান থাকে না।
এখানে,
সমীকরণজোটটি সমাধান করার জন্য ১ম সমীরকণকে 2 দ্বারা গুণ করে প্রাপ্ত সমীকরণ থেকে ২য় সমীকরণ বিয়োগ করলে অসম্ভব অবস্থা পাওয়া যায় বিধায় সমীকরণজোটটি অসমঞ্জস। আর এ কারণেই সমীকরণদ্বয়ের পৃথকভাবে অসংখ্য সমধান থাকলেও জোট হিসেবে তাদের কোনো (সাধারণ) সমাধান নেই।
very nice n tnx for that…
Thank you
Very nice n tnx for that solution
Thanks